On real algebras generated by positive and nonnegative matrices
نویسندگان
چکیده
Algebras generated by strictly positive matrices are described up to similarity, including the commutative, simple, and semisimple cases. We provide sufficient conditions for some block diagonal matrix algebras be a set of nonnegative similarity. Also we find all realizable dimensions two semi-commuting matrices. The last result provides solution problem posed M. Kandi?, K. Šivic (2017) [13].
منابع مشابه
Separating doubly nonnegative and completely positive matrices
The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP...
متن کاملImmanants of Totally Positive Matrices Are Nonnegative
If/ is an irreducible character of Sn, these functions are known as immanants; if/ is an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note that the determinant and permanent are obtained by choosing / to be the sign character and trivial character of Sn, respectively. We should po...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملOn Nonnegative Factorization of Matrices
It is shown that a sufficient condition for a nonnegative real symmetric matrix to be completely positive is that the matrix is diagonally dominant.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2021
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2020.11.020